

MAS.S65: Piezoelectrics for Ultrasonic Biomedical Devices

Course instructor: Canan Dagdeviren

Supporting staff members: Lin Zhang, Md Osman Goni Nayeem

Style

Flexible; Individual projects (teamwork can also be possible upon the wish of students).

To pass, you must: (i) attend all the class lectures, (ii) participate during the experimental/simulation sessions, and (iii) submit the project(s) at the end of course. By the end of Class #1, students must decide whether to register or drop the course.

Overview

This is a special topic on piezoelectric materials and devices, which have become a leading source of functional and intelligent electronics in a vast array of applications, from personal healthcare to industrial equipment. The instructor anticipates that this unique course will shed light on the present state of research and development within the community of piezoelectric materials and ultrasound devices for biomedical applications. It begins with a comprehensive summary of the history of piezoelectrics and current hot research topics. Second, it covers all aspects of the materials starting from fundamental concepts, including the theory of piezoelectricity, and the physics of piezoelectric materials and their characteristics. Third, it demonstrates advanced electronic devices, including sensors, actuators, harvesters, and transducers. Fourth, it will cover cutting-edge applications of piezoelectric ultrasound for medical imaging, energy transfer, and neurostimulations. Last but not least, students will be trained on modelling ultrasonic propagation to design medical devices for engineering and characterizing piezoelectric materials and manufacturing and measuring piezoelectric devices for engineering and biomedical applications. On the course website, course-related books/articles/notes/video tutorials are provided. The final projects are to submit digital drawings (2D/3D) and their corresponding simulation results of the proposed piezoelectric medical devices based on the interest of the students.

Objectives

- 1. To gain knowledge from experts in the piezoelectric and ultrasound research field,
- 2. To understand the impact of microfabricated devices on society,
- 3. To encourage participation in class by the asking of questions,
- 4. To experience the piezoelectric materials/devices fabrication and characterization,
- 5. To draw and simulate the performance of different piezoelectric ultrasound based medical devices.
- 6. To write a scientific report on the research findings and experiments as a team.

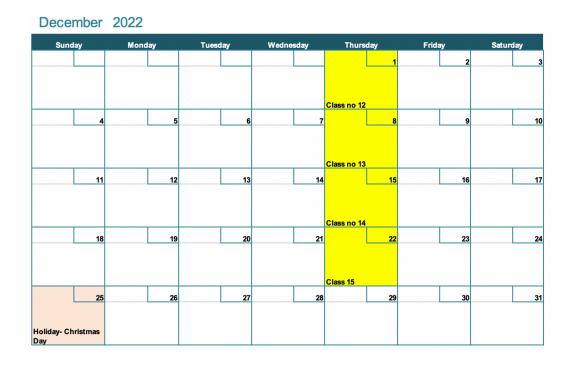
Schedule (Lecture sessions: ≥3 hrs/class; Experimental/Simulation sessions: ≥3 hrs/class)

Class	Session	Topics					
		Part A: Piezoelectric fundamentals & applications					
No. 1	Class	Introduction					
110. 1	Class	Introduction					
		- Syllabus overview & what you can learn from this class					
		- The smart materials & the role of piezoelectrics					
		- Dielectrics/piezoelectrics/ferroelectrics subsets					
		- Origin of piezoelectric phenomenon					
		- Structure & piezoelectric equations					
		- Parameters, full matrix, and governing equations					
		- Piezoelectric constants and important piezoelectric parameters/factors					
		- Resonant crystal geometries & modes of vibration					
		- Fundamental & harmonic frequencies and corresponding modes of vibrations					
		- Perovskite structure and importance of Curie temperature					
		- Tetragonal, orthorhombic, rhombohedral, etc. phases					
No. 2	Class	 Importance of morphotropic & polymorphic phase boundary (A) Piezoelectric materials: crystal and ceramics 					
110. 2	Class	(A) riezoelectric materials: crystal and ceramics					
		- Different types of ceramics: lead-based and lead-free types					
		- Fabrication and preparation					
		- Important crystal and ceramic properties e.g., longitudinal velocity, impedance, d ₃₃ , k ₃₃ ,					
		dielectric constant, loss, etc.					
		- Performance and recent important work					
		(B) Piezoelectric materials: films (inorganic and organic)					
		- Different types of films					
		- Fabrication and preparation					
		- Important properties					
		- Performance and recent important work					
		(C) Piezoelectric materials: composites					
		- 10 types of connection					
		- Fabrication and preparation of composites					
		- Important properties					
		- Performance and recent important work					
No. 3	Class	(A) Piezoelectric devices: sensors					
		- device examples					
		- performance					
		 applications (B) Piezoelectric devices: actuators 					
		- device examples					
		- performance					
		- applications					
		(C) Piezoelectric devices: harvesters					
		- device examples					

		- performance					
		- applications					
No. 4	Experimental	Piezoelectric materials characterization					
		- Exhibit different piezoelectric materials: ceramics/crystal/thin film					
		 Impedance analysis 					
		- LDV measurement					
		- Parameters calculation					
		Part B: Ultrasound fundamentals & applications					
No. 5	Class	Introduction of ultrasound					
		Dhusios					
		- Physics					
		 Propagation model: wave equations & interaction of Sound and Media Importance of frequency/wavelength/velocity, impedance matching, & attenuation 					
		 Importance of nequency/wavelength/verocity, impedance matching, & attendation How to generate ultrasound wave 					
		- Ultrasound transducers					
		- Why arrays: 1D array, 1.5D array, 2D array					
		- Types of arrays (linear, curvilinear, phased, annular, sector, theta-theta, PMUT array,					
		etc.) and comparison, and selection criteria for end-use applications					
		 Importance of understanding tissue attenuation coefficient and acoustic loss 					
		 Attenuation of a soft tissue as a function of frequency 					
No. 6	Class	Ultrasound transducers					
		- The structure of ultrasound transducers					
		 Performance parameters with examples based on different end uses Important factors in US: intensity, amplitude, pulse duration, duty cycle 					
		 Important factors in OS. Intensity, ampirtude, pulse duration, duty cycle Importance of press focusing, focusing lens, matching, and backing layers 					
		 Equivalent circuit transducer model: KLM model 					
		 Demonstrating AUTOCAD application for microfabricated array and electrode trace 					
		designing					
No. 7	Class	Ultrasound applications: imaging					
		- Background of ultrasound imaging					
		 Different modes of imaging: A, B, M, and Doppler mode 					
		 Performance parameters with examples based on different end uses 					
		 Examples of ultrasound imaging 					
		 Examples of different transducer array designs for imaging (comparing previous & 					
		recent works)					
		 Importance of piezoelectric material selection for imaging (comparing previous & 					
		recent works)					
No. 8	Class	Ultrasound applications: imaging					
		- Beamforming & steering					
		- Pulse-echo/Chirp					
		 Axial & lateral dimensions of the beam 					
		 Delay and sum method for image generation 					
		- Signal processing					
		- Circuit design and working principle					
		- Ultrasound imaging analysis					
No. 9	Class	Ultrasound applications: wireless energy transfer & communication					
		- Physics					

No 14	Project realization #2	Wireless energy harvester design: Draw 2D/3D image of your piezoelectric harvester & apply simulation using PiezoCAD for its performance characterization
No. 13	Project realization #1	Medical imaging transducer design: Draw 2D/3D image of your piezoelectric transducer & apply simulation using PiezoCAD for its performance characterization
		 (B) AUTOCAD application for designing microfabricated PMUTs (C) Demonstrating COMSOL/On-Scale simulation experiments for profiling the piezoelectric ultrasound stimulation and investigate the effect of design parameters
		 Applications Propagation model Frequency and materials selection & others
	Experimental	- Physics
No. 12	Class &	 Examples of different ultrasonic device designs for stimulation/therapy, drug delivery, and tissue characterization (A) Piezoelectric Micromachined Ultrasound Transducer (PMUT)
		 Tissue characterization: radiology, cardiac application, etc. Drug delivery: methodology and current state of the earth
		 Different stimulation techniques: focused, pulsed, continuous, etc. Neurostimulation, thermal ablation, lithotripsy, elastography, therapeutic contrast agent
		- Frequency selection like HIFU, LIFU, etc.
		 Applications Propagation model
		- Physics
		with low and high frequency transducer
No. 11	Class	Ultrasound applications: Stimulation/therapy, drug delivery & tissue characterization
		(ii) ultrasonic transmitting transducer for energy transfer
		(i) ultrasonic transducer for medical imaging and
		parameters for different end-uses of:
		 Discussion on simulation parameters for ultrasound transducer Demonstrating PiezoCAD simulation experiments to investigate the effect of design
No. 10	Experimental	 & recent works) Fundamental of PiezoCAD for piezoelectric transducer
		- Importance of piezoelectric materials selection for energy transfer (comparing previous
		- Examples of different ultrasonic receiver/transmitter designs for energy transfer (comparing previous & recent works)
		- Transmitter & receiver parameters for energy transfer & communication
		- Importance of receiver/transmitter design selection
		 Applications Parameters for ultrasound energy harvesting sensitivity

Class calendar:


Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1	2	3
4	5	6	7	8	9	10
11	Holiday- Labor Day	13	14	Class no 1 15	16	17
	12	13	14	<u>15</u>	10	17
				Class no 2		
18	19	20	21	22	23	24
				Class no 3		
25	26	27	28	29	30	
				Class no 4		

November 2022

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1	2		3 4	5
	_			Class no 9	0 11	12
6	7	8	9			12
				Class no 10	Holiday- Veterans' Day	
13	14	15	16	i <u>1</u>	7 18	19
				Class no 11		
20	21	22	23	2	4 25	26
				Holiday- Thanksgiving Day	Holiday- Day After Thanksgiving	
27	28	29	30			

